
•1

CPE/EE 422/522
Advanced Logic Design

L15
Electrical and Computer Engineering
University of Alabama in Huntsville

16/07/2003 UAH-CPE/EE 422/522 AM 2

Outline

• VHDL
– What we know (additional topics)

• Attributes
• Transport and Inertial Delays
• Operator Overloading
• Multivalued Logic and Signal Resolution
• IEEE 1164 Standard Logic
• Generics
• Generate Statements
• Synthesis of VHDL Code
• Synthesis Examples

– What we don’t know
• Files and Text IO

– Networks for Arithmetic Operations
– SM Charts

16/07/2003 UAH-CPE/EE 422/522 AM 3

Files

• File input/output in VHDL
• Used in test benches

– Source of test data
– Storage for test results

• VHDL provides a standard TEXTIO package
– read/write lines of text

16/07/2003 UAH-CPE/EE 422/522 AM 4

Files

•2

16/07/2003 UAH-CPE/EE 422/522 AM 5

Standard TEXTIO Package

• Contains declarations and procedures
for working with files composed of lines of text

• Defines a file type named text:
type text is file of string;

• Contains procedures for reading lines of text from a
file of type text and for writing lines of text to a file

16/07/2003 UAH-CPE/EE 422/522 AM 6

Reading TEXTIO file

• Readline reads a line of text and places
it in a buffer with an associated pointer

• Pointer to the buffer must be of type line,
which is declared in the textio package as:

type line is access string;
• When a variable of type line is declared,

it creates a pointer to a string
• Code

variable buff: line;
...
readline (test_data, buff);

– reads a line of text from test_data and places it in a
buffer which is pointed to by buff

16/07/2003 UAH-CPE/EE 422/522 AM 7

Extracting Data from the Line Buffer

• To extract data from the line buffer, call a read
procedure one or more times

• For example, if bv4 is a bit_vector of length four,
the call

read(buff, bv4)
– extracts a 4-bit vector from the buffer, sets bv4 equal to

this vector, and adjusts the pointer buff to point to the
next character in the buffer. Another call to read will then
extract the next data object from the line buffer.

16/07/2003 UAH-CPE/EE 422/522 AM 8

Extracting Data from the Line Buffer (cont’d)

• TEXTIO provides overloaded read procedures to
read data of types bit, bit_vector, boolean,
character, integer, real, string, and time from buffer

• Read forms
read(pointer, value)
read(pointer, value, good)

– good is boolean that returns TRUE if the read is
successful and FALSE if it is not

– type and size of value determines which of the read
procedures is called

– character, strings, and bit_vectors within files of type text
are not delimited by quotes

•3

16/07/2003 UAH-CPE/EE 422/522 AM 9

Writing to TEXTIO files

• Call one or more write procedures to write data
to a line buffer and then call writeline to write the line to a
file
variable buffw : line;
variable int1 : integer;
variable bv8 : bit_vector(7 downto 0);
...
write(buffw, int1, right, 6); --right just., 6 ch. wide
write(buffw, bv8, right, 10);
writeln(buffw, output_file);

• Write parameters: 1) buffer pointer of type line,
2) a value of any acceptable type,
3) justification (left or right), and 4) field width (number of characters)

16/07/2003 UAH-CPE/EE 422/522 AM 10

An Example

• Procedure to read data from a file and store the
data in a memory array

• Format of the data in the file
– address N comments
byte1 byte2 ... byteN comments

• address – 4 hex digits
• N – indicates the number of bytes of code
• bytei - 2 hex digits
• each byte is separated by one space
• the last byte must be followed by a space
• anything following the last state will not be read

and will be treated as a comment

16/07/2003 UAH-CPE/EE 422/522 AM 11

An Example (cont’d)

• Code sequence: an example
– 12AC 7 (7 hex bytes follow)

AE 03 B6 91 C7 00 0C (LDX imm, LDA dir, STA ext)
005B 2 (2 bytes follow)
01 FC_

• TEXTIO does not include read procedure
for hex numbers
– we will read each hex value as a string of characters

and then convert the string to an integer

• How to implement conversion?
• table lookup – constant named lookup is an array of integers

indexed by characters in the range ‘0’ to ‘F’

• this range includes the 23 ASCII characters:
‘0’, ‘1’, ... ‘9’, ‘:’, ‘;’, ‘<‘, ‘=‘, ‘>’, ‘?’, ‘@’, ‘A’, ... ‘F’

• corresponding values:
0, 1, ... 9, -1, -1, -1, -1, -1, -1, -1, 10, 11, 12, 13, 14, 15

16/07/2003 UAH-CPE/EE 422/522 AM 12

VHDL Code to Fill Memory Array

•4

16/07/2003 UAH-CPE/EE 422/522 AM 13

VHDL Code to Fill Memory Array (cont’d)

16/07/2003 UAH-CPE/EE 422/522 AM 14

Things to Remember

• Attributes associated to signals
– allow checking for setup, hold times,

and other timing specifications
• Attributes associated to arrays

– allow us to write procedures that do not depend on the
manner in which arrays are indexed

• Inertial and transport delays
– allow modeling of different delay types that occur in real

systems
• Operator overloading

– allow us to extend the definition of VHDL operators
so that they can be used with different types of operands

16/07/2003 UAH-CPE/EE 422/522 AM 15

Things to Remember (cont’d)

• Multivalued logic and the associated resolution
functions
– allow us to model tri -state buses, and systems where a

signal is driven by more than one source

• Generics
– allow us to specify parameter values for a component

when the component is instantiated

• Generate statements
– efficient way to describe systems with iterative structure

• TEXTIO
– convenient way for file input/output

16/07/2003 UAH-CPE/EE 422/522 AM 16

Networks for Arithmetic Operations

Case Study: Serial Adder with Accumulator

•5

16/07/2003 UAH-CPE/EE 422/522 AM 17

Networks for Arithmetic Operations

Serial Adder with Accumulator

16/07/2003 UAH-CPE/EE 422/522 AM 18

State Graphs for Control Networks

• Use variable names instead of 0s and 1s
– E.g., XiXj/ZpZq

• if Xi and Xj inputs are 1, the outputs Zp and Zq are 1
(all other outputs are 0s)

– E.g., X = X1X2X3X4, Z = Z1Z2Z3Z4
• X1X4’/Z2Z3 == 1 - - 0 / 0 1 1 0

16/07/2003 UAH-CPE/EE 422/522 AM 19

Constraints on Input Labels

• Assume: I – input expression =>
we traverse the arc when I=1

Assures that at most one input label can be 1 at any given time

Assures that at least one input label will be 1 at any given time

1 + 2: Exactly one label will be 1 =>
the next state will be uniquely defined for every input combination

16/07/2003 UAH-CPE/EE 422/522 AM 20

Constraints on Input Labels (cont’d)

•6

16/07/2003 UAH-CPE/EE 422/522 AM 21

Networks for Arithmetic Operations

Case Study: Serial Parallel Multiplier

Note: we use unsigned binary numbers

16/07/2003 UAH-CPE/EE 422/522 AM 22

Block Diagram of a Binary Multiplier

Ad – add signal // adder outputs are stored into the ACC
Sh – shift signal // shift all 9 bits to right
Ld – load signal // load multiplier into the 4 lower bits of the ACC
and clear the upper 5 bits

16/07/2003 UAH-CPE/EE 422/522 AM 23

Multiplication Example

16/07/2003 UAH-CPE/EE 422/522 AM 24

State Graph for Binary Multiplier

•7

16/07/2003 UAH-CPE/EE 422/522 AM 25

Behavioral VHDL Model

16/07/2003 UAH-CPE/EE 422/522 AM 26

Behavioral VHDL Model (cont’d)

16/07/2003 UAH-CPE/EE 422/522 AM 27

Multiplier Control with Counter

• Current design: control part generates the control
signals (shift/add) and counts the number of steps

• If the number of bits is large (e.g., 64),
the control network can be divided into
a counter and a shift/add control

16/07/2003 UAH-CPE/EE 422/522 AM 28

Multiplier Control with Counter (cont’d)

Add-shifts control: tests St and M and generates the proper
sequence of add and shift signals
Counter control: counter generates a completion signal K
that stops the multiplier after the proper number of shifts
have been completed

•8

16/07/2003 UAH-CPE/EE 422/522 AM 29

Multiplier Control with Counter (cont’d)

• Increment counter each time a shift
signal is generated
• Generate K after n-1 shifts occured

16/07/2003 UAH-CPE/EE 422/522 AM 30

Operation of a Multiplier Using Counter

16/07/2003 UAH-CPE/EE 422/522 AM 31

Array Multiplier

• What do we need to realize Array Multiplier?

• AND gates = ?
• FA = ?
• HA = ?

16/07/2003 UAH-CPE/EE 422/522 AM 32

Array Multiplier (cont’d)

•9

16/07/2003 UAH-CPE/EE 422/522 AM 33

Array Multiplier (cont’d)

• Complexity of the N-bit array multiplier
– number of AND gates = ?
– number of HA = ?
– number of FA = ?

• Delay
– tg – longest AND gate delay
– tad – longest possible delay through an adder

16/07/2003 UAH-CPE/EE 422/522 AM 34

Multiplication of Signed Binary Numbers

• How to multiply signed binary numbers?
• Procedure

– Complement the multiplier if negative
– Complement the multiplicand if negative
– Multiply two positive binary numbers
– Complement the product if it should be negative

• Simple but requires more hardware and time
than other available methods

16/07/2003 UAH-CPE/EE 422/522 AM 35

Multiplication of Signed Binary Numbers

• Four cases
– Multiplicand is positive, multiplier is positive
– Multiplicand is negative, multiplier is positive
– Multiplicand is positive, multiplier is negative
– Multiplier is negative, multiplicand is negative

• Examples
– 0111 x 0101 = ?
– 1101 x 0101 = ?
– 0101 x 1101 = ?
– 1011 x 1101 = ?

• Preserve the sign of the partial product
at each step

• If multiplier is negative, complement
the multiplicand before adding it in at
the last step

16/07/2003 UAH-CPE/EE 422/522 AM 36

2’s Complement Multiplier

•10

16/07/2003 UAH-CPE/EE 422/522 AM 37

State Graph for 2’s Complement Multiplier

16/07/2003 UAH-CPE/EE 422/522 AM 38

Faster Multiplier

• Move wires from the adder outputs one position to the right =>
add and shift can occur at the same clock cycle

16/07/2003 UAH-CPE/EE 422/522 AM 39

State Graph for Faster Multiplier

16/07/2003 UAH-CPE/EE 422/522 AM 40

Behavioral Model for Faster Multiplier

•11

16/07/2003 UAH-CPE/EE 422/522 AM 41

Behavioral Model for Faster Multiplier

16/07/2003 UAH-CPE/EE 422/522 AM 42

Command File and Simulation

16/07/2003 UAH-CPE/EE 422/522 AM 43

Test Bench for Signed Multiplier

16/07/2003 UAH-CPE/EE 422/522 AM 44

Digital design with SM Charts

• State graphs used to describe
state machines controlling a digital system

• Alternative: use state machine flowchart

•12

16/07/2003 UAH-CPE/EE 422/522 AM 45

State Machine Charts

• SM chart or ASM (Algorithmic State Machine) chart
• Easier to understand the operation of digital

system by examining of the SM chart instead of
equivalent state graph

• SM chart leads directly to hardware realization

16/07/2003 UAH-CPE/EE 422/522 AM 46

Components of SM charts

16/07/2003 UAH-CPE/EE 422/522 AM 47

SM Blocks

SM chart is constructed from SM blocks

State S1 is entered =>

Z1 and Z2 become 1

if X1=0
Z3 and Z4 become 1

if X1=1 and X3=0
Z5 become 1

16/07/2003 UAH-CPE/EE 422/522 AM 48

Equivalent SM Blocks

•13

16/07/2003 UAH-CPE/EE 422/522 AM 49

Equivalent SM Charts for Comb Networks

16/07/2003 UAH-CPE/EE 422/522 AM 50

Block with Feedback

16/07/2003 UAH-CPE/EE 422/522 AM 51

Equivalent SM Blocks

16/07/2003 UAH-CPE/EE 422/522 AM 52

Converting a State Graph to an SM Chart

